
ChE-304 Problem Set 4
Week 4

Problem 1
Massieu (a French mathematician and physicist) proposed alternate thermodynamic 
potentials based on entropy as a function of internal energy (dS (U ,V ,N )). We don’t use 
them because they are less practical than the ones you are used to seeing. Can you write 
the 4 “Massieu thermodynamic potentials” with dS being the first and the 3 others 
obtained using Legendre transformations?

Hint: the goal of the Legendre transforms is to have the variables be functions of 
intensive variables (in this case T and P). They do not have to be as simple as the 
classical potentials you are used to.

Solution

dU =TdS−PdV +μdN → dS=dU
T

+ P
T

dV − μ
T

dN

This is the first Massieu function and S is the first thermodynamic potential.

To find the others, we want functions that vary with intensive variables (T  and P) rather 
than extensive variables.

With: d ( U
T )=Ud( 1

T )+ 1
T

dU

We can write:

 dS=d( U
T )−Ud( 1

T )+ P
T

dV − μ
T

dN →d (S−U
T )=−Ud( 1

T )+ P
T

dV − μ
T

dN

This is the 2nd Massieu function and S−
U
T  is the 2nd thermodynamic potential.

Now let’s use d ( PV
T )= P

T
dV +Vd ( P

T )
dS=dU

T
+d ( PV

T )−Vd (P
T )− μ

T
dN →d (S− PV

T )=dU
T

−Vd (P
T )− μ

T
dN

This is the 3rd Massieu function and S−
PV
T  is the 3rd thermodynamic potential.

The 4th Massieu function is a combination of the 2:



d (S−U
T

−PV
T )=−Ud( 1

T )−Vd ( P
T )− μ

T
dN

Where S−
U
T

− PV
T  is the 4th thermodynamic potential.



Problem 2

The Petit Chêne in Lausanne goes up by about 60 m. Imagine you want to build a 1 ton 
car that can go up the Petit Chêne in one minute. Assuming the only thing the car has to 
deal with is climbing the hill (no friction, or other non ideal losses) and that the fuel cell 
is reversible, what are the minimum number of hydrogen fuel cells you will need and the 
minimum hydrogen consumption per time?

Assume a typical fuel cell current densities are on the order of 1 A/cm2 with reasonably 
sized cell that can fit into a car (measuring 100 cm2).

Faraday’s constant: F=96485 C
mol e−¿¿

Solution

Mech. Power=mg ∆ z
t

=1000 9.811=9' 800J /S

η=
−∆ GRXN

−∆ HRXN
=−237

−286
=83 % 

HH V H 2
=142 MJ

kg
→ H 2consumption=

9' 800 J
S

0.83 142' 000 J
g

60sec
min

=5.0 gH 2/min

Pelectric=nfuelCells E0 I → nfuelCells=
Pelectric

E0 I

E0=
−∆ GRXN , H 2

0

nF
= 237' 000

296 ' 485
=1.23V

n fuelCells=
9' 800 J

S
1.23 100

=80

The real number for a typical car is close to 400… but this simple calculation gets us 
close.



Problem 3

Can you re-derive the efficiency of a fuel cell using a simple energy balance for a 
reversible fuel cell? Assume reactants enter the fuel cell continuously and products (after 
full reaction) exit the fuel cell continuously. Draw all the incoming and exiting energy 
streams and write the energy balance.

Solution:

Doing a simple energy balance:

In – Out = Acc

Since we are in a continuous system, we can use enthalpy to account for the energy 
released by the transformation from reactants to products:

ṁreactants H reactants (T 0 , P0 )−ṁproducts H products (T 0 ,P0 )−Q̇−Ẇ electric=0

Since there is no accumulation of mass in the fuel cell, we have ṁreactants=ṁproducts=ṁ:

ṁ (−∆ H RXN ( T0 , P0 ))=Q̇+Ẇ electric

In an ideal case, Q̇=−Q̇rev  (we add a negative sign because Qrev is always calculated 
from the systems perspective, while in the energy balance we already assumed that it was
exiting the system) 

ṁ (−∆ H RXN ( T0 , P0 ))=−Q̇rev+Ẇ electric

From the definition of Qrev: 
dQrev

T
=dS

Here, everything is isothermal, so we assume Qrev is released at T 0:



dQrev

T 0
=dS (T 0, P0)

Q̇rev=ṁT 0∫ dS(T0 , P0)=ṁT 0 (S products (T 0 ,P0 )−Sreactants (T0 , P0))=ṁ T0 ∆ SRXN (T 0 , P0)

From the expression above: 
ṁ (−∆ H RXN ( T0 , P0 ) )=−ṁT 0 ∆ SRXN (T0 , P0)+Ẇ electric

Ẇ electric=ṁ (−∆ H RXN ( T0 , P0 )+T 0 ∆ SRXN (T 0 ,P0))=ṁ (−∆ GRXN (T 0 ,P0) )

η=
Ẇ electric

ṁreactants H reactants (T0 , P0 )−ṁproducts H products (T 0 , P0 )
=

ṁ (−∆ GRXN (T 0 , P0 ) )
ṁ (−∆ HRXN (T 0 , P0 ))

=
−∆ GRXN (T 0 , P0 )
−∆ HRXN (T 0 , P0 )

In this balance it’s easy to see how, if ∆ SRXN (T 0 , P0) is positive, the system would in fact 
be receiving extra heat from the surroundings, which would then need to be included in 
the inputs for the efficiency calculation.


